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Abstract: WEDM is an intricate process whereby improper selection of 
machine parameters often leads to undesirable performances. Therefore, the 
extraction of optimal machining parameters is pivotal for achieving better 
performances in WEDM. Metaheuristic optimizers have gained immense 
popularity due to their capability of providing global optimal solutions. The 
application of recently reported metaheuristic optimizers in non-traditional 
machining processes is rarely being explored. In light of the above, the 
current paper examines the use of six recently reported metaheuristic 
optimizers, namely the ant lion optimization (ALO), chimp optimization 
algorithm (ChoA), moth flame optimization (MFO), spotted hyena 
optimization (SHO), Harris Hawk optimization algorithm (HHO), Marine 
predator algorithm (MPA) to optimize WEDM performances in three WEDM 
processes. Particle swarm optimization (PSO) and Teaching learning-based 
optimization (TLBO), two well-known existing optimization approaches, are 
also included in this study to enable a reasonable comparison of the 
algorithms' performance. The algorithms are compared with parameters 
such as the quality of optimal solutions, convergence behavior, and average 
computational time. HHO algorithm is found to be robust amongst the eight 
competitors in terms of culminating the global optimal solution and 
propensity to quickly converge to the global optimal solution which 
corroborates the high exploration and exploitation capability of the 
algorithm. Therefore, HHO optimizer can be exploited in future to determine 
the optimal operating conditions for other manufacturing processes. 

Key words: WEDM, optimization, metaheuristic algorithms, two sample t-
test, sensitivity analysis  
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1. Introduction 

      In the era of technological advancements, there is a growing demand for advanced 
materials which are hard and difficult-to-machine. The machining of such advanced 
materials with high geometrical accuracy using traditional machining approaches is 
an impossible task. As a result, a number of non-traditional machining (NTM) 
techniques are available to meet the requirement for high geometrical accuracy. 
WEDM is a non-traditional machining approach that has garnered a lot of interest in 
the industry because of its ability to create intricate curves with high geometrical 
accuracy [Majumder & Maity, 2018]. The material removal in the WEDM process 
commences when an electric spark emerges amid the wire-workpiece interface. The 
spark liquidifies the material, and subsequently the molten debris is cleaned by the 
dielectric fluid injected from the top and bottom nozzles. The simplified view of the 
WEDM procedure is portrayed in Figure 1. 

 

Figure 1 Simplified view of WEDM process 

 
      The performance attributes in WEDM are not always acquired at the envisioned 
level due to the process's intrinsic nature and a number of processing parameters 
(pulse duration, pulse interval, servo voltage, wire feed, wire speed, and so on), i.e., 
each process performance enhancement comes at the expense of another. As a result, 
machining under optimal operating conditions guarantees that a trade-off between 
the process performances is adequately maintained. In light of the preceding, 
researchers looked at several optimization techniques for selecting the best 
combination of process attributes. The next section provides a concise description of 
the optimization techniques that have been reported in WEDM operation, the 
importance of metaheursitic optimization algorithms and the advantages and 
limitations of different metaheuristic optimizers.  

  
2. Literature Review 

      Mandal et al. (2016) derived the optimal operating conditions by the desirability 
function while processing Nimonic C-263 superalloy through WEDM. In a recent 
investigation, the research group adopted a hybrid strategy i.e., signal-to-noise ratio 
and the Taguchi methodology to optimize the performance variables of the WEDM 
process concurrently (Ramakrishnan & Karunamoorthy, 2008). A group of researchers 
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optimized the performances using RSM in WEDM of Inconel 718 (Tonday & Tigga, 
2019). Khan et al. (2014) implemented grey relational strategy to optimize 
microhardness and surface roughness simultaneously during the WEDM process. It is 
worth pointing that conventional techniques such as the Taguchi approach and grey 
relational analysis do not guarantee global optimum solutions as they commence the 
optimization with the specific level of process parameters. As a result, researchers 
are intrigued to adopt metaheuristic algorithms in WEDM process since they provide 
global optimum solutions or the best solutions.  
     Metaheuristic algorithms are algorithms that are used in tackling a spectrum of 
complicated optimization problems without requiring to substantially adapt to each 
problem. The greek word "meta," which appears in the term, denotes that these 
algorithms are "higher level" heuristics, as contrary to problem-specific heuristics. 
Metaheuristic algorithms are commonly used to address problems for which no 
appropriate problem-specific algorithm exists. The following traits are shared by 
almost all metaheuristics: They are nature-inspired; they use stochastic components 
(involving random variables); they do not evaluate the gradient or Hessian matrix of 
the objective function.  
    The research community has been using metaheuristic algorithms in WEDM for the 
past thirty years. One pioneer contribution is the proposition of the simulated 
annealing method in WEDM to discover the optimal operating condition for the 
cutting rate and surface roughness (Tarng et al. 1995). In a similar manner, Sadeghi 
et al. (2011) explored the Tabu-search algorithm for optimizing the performance 
parameters. In WEDM of Inconel-690, a modified version of cuckoo search algorithm 
is proposed to assess the optimal outcomes (Rao & Venkaiah, 2017). A group of two 
researcher performed optimization of the performance parameters employing bat 
algorithm in taper formation in Inconel 718 exploiting WEDM. In a research effort, 
NSGA methodology is executed to track the various optimal parametric combinations 
(Pareto set) for two performance parameters in WEDM of Ti6Al4V (Nayak & 
Mahapatra, 2016). In a similar manner, Garg et al. (2012) found a set of Pareto optimal 
solutions in WEDM of Ti6Al-4V alloy employing the NSGA-II algorithm. In view of the 
above, it is observed that there are limited research in WEDM which have 
documented the use of metaheuristic optimizers in WEDM processes. It is worth 
emphasizing that the No-Free-Lunch (NFL) theorem asserts that one specific 
algorithm cannot solve all sorts of optimization problems (Wolpert & Macready, 
1997). Furthermore, previous studies have not documented the use of recently 
developed metaheuristic optimizers in WEDM. As a result, we plan to investigate the 
algorithmic performance of six recently reported metaheuristic optimizers, as well as 
two popular state-of-the-art metaheuristic optimizers, while optimizing WEDM 
performances either individually (single-objective) or collectively (multi-objective) 
for three WEDM processes. The six recently reported metaheuristic optimizers are 
ant lion optimization (ALO), chimp optimization algorithm (ChoA), moth flame 
optimization (MFO), spotted hyena optimization (SHO), Harris Hawk optimization 
(HHO), and Marine predator algorithm (MPA). Whereas, the two popular 
metaheuristic optimizers are particle swarm optimization and teaching learning-
based optimization. We discussed the typical characteristics of each representative 
algorithm as follows to support the decisions made during the algorithm selection 
process. The PSO optimizer is simpler (Lee & Park, 2006). However, the main 
loophole of this optimizer is the quick convergence of all solutions which undermines 
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the diversity in the population (Juneja & Nagar, 2016). The TLBO optimizer has fewer 
tuning parameters than other optimizers, doesn't get stuck in local optima like other 
optimizers, and provides an accurate global optimal solution in minimum time (Uzlu 
et al., 2014). The limitation of this optimizer is that it ends with near-optimal solution 
in minimum iterative step (Sultana & Roy, 2014). SHO requires a low computational 
effort when tackling problems with high dimensions (Krishna et al., 2021). However, it 
is found that the problem space remains partially explored using SHO because of the 
concentrated search around the current optimal solution which might be a local 
optimum (Sabahno & Safara, 2021). ChoA has ample of advantages such as high 
exploration, a semi-deterministic feature of chaotic maps assists in high exploitation, 
local optima avoidance is very high, few parameters to tune, ease in implementation 
due to the parallel structure of independent groups (Khishe & Mosavi, 2020). In 
contrary, it has few limitations such as premature convergence, a slow rate of 
convergence, discovering local minima rather than global minima, and a low balance 
between exploitation and exploration (Kaur et al., 2021). The advantage of using MFO 
is that it is simple, and can be easily hybridized with other algorithms (Shehab et al., 
2021). But, it may easily fall into the local optima because it emphasizes on 
exploitation more than exploration which causes premature convergence, and the 
search ability is insufficient (Shan et al. 2021). Population diversity, strong 
optimization ability, and fewer adjustment factors are the typical advantages of ALO 
algorithm (Yao et al. 2021). Due to the roulette wheel selection technique, ALO 
algorithm suffers from rapid convergence (Abualigah et al., 2021). MPA optimizer has 
limited number of algorithmic variables. Moreover, the procedures are simple and 
converge fast with the added benefits of flexibility, and robustness (Yakout et al. 
2021). However, it exhibits premature convergence in complex and high dimensional 
problems, and falls in local optima (Houssein et al., 2021). HHO optimizer is simple 
and has a few exploratory and exploitative mechanisms (Mansoor et al., 2020). But it 
has the major limitation of displaying finite exploration behavior as the exploration 
behavior depends on the equal perching chance, and in the mid-flight, the escape 
energy gets limited within unity (Naik et al., 2021). 
     In the present study, the goal is to compare the considered algorithms' 
performances based on several parameters such as the quality of optimal solutions, 
convergence behavior, and average computing time. The motive behind the 
comparative analysis is to find the most reliable optimization algorithm. Performance 
stability of the optimizers are retrieved exploiting the sensitivity analyses. Lastly, we 
tested the performance of the eight competing optimizers on benchmark test 
functions (i.e., the Sphere function and the Generalized Rastrigin's function) to 
determine the robust algorithm. The strategy adopted to accomplish the goal of the 
current research is delineated with a flowchart (see in Figure 2). 
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Figure 2 Flowchart showing the strategy adopted for the present work 

3. Metaheuristic optimization algorithms 

3.1. Teaching Learning Based Optimization (TLBO) 

       The fundamental concept of TLBO is to simulate a two-stage learning process in a 
traditional classroom setting (Rao et al., 2011). The communication of knowledge 
between a teacher and students occurs in the first stage, known as the Teacher Phase. 
The amount of knowledge gained by students is proportional to the amount of 
teacher's knowledge. However, in practice, the likelihood of the teaching to become 
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successful is distributed according to Gaussian law. Only a small percentage of 
students can comprehend everything indicated by the right end of the Gaussian 
distribution. However, the chances of learning new things aren't entirely eliminated. 
A student can understand from the fellow students at the second stage, known as the 
Learner Phase. Overall, the amount of knowledge conveyed to a student is 
determined by his or her teacher and by peer learning exchanges.  

3.1.1. Teacher Phase 

       In this phase, a teacher intends to improve the average performance in the subject 
being taught. The teaching job is first assigned to the best individual in the 
population

teacherX , after which the algorithm improves other individuals 
iX  by 

adjusting their positions towards that of the teacher
teacherX . The current mean value of 

the individuals 
meanX  is used to create each individual's position, which symbolizes the 

traits of all learners in the current generation. The disparity amid the teacher's 
knowledge and the students’ knowledge is simulated in Eq. (1), which shows how the 
difference in student performance is affected by the difference in teacher’s knowledge 
and the students’ knowledge. 

  new i teacher F meanX X r X T X                       
(1) 

The 
FT  in Eq. (1) refers to a teaching factor which depicts the altered mean value, and 

r refers a random number in [0,1]. 

3.1.2. Learner Phase 

      Increasing an individual's knowledge  iX  is done in this phase through peer 

learning from any student 
iiX  and interaction amid the individual and other learners. 

Two states can arise based on the relative knowledge levels of these two students: if 

iiX  is better than
iX , 

iX  will move towards 
iiX   (shown in Eq. (2)), and if

iiX  is worse 

than
iX , 

iX will be moved away from 
iiX  (shown in Eq. (3). Student will be allowed 

into the population if he or she performs better by using Eq. (2), and Eq. (3). The 
algorithm will iterate till the end condition is reached. 

 new i ii iX X r X X            
(2) 

 new i i iiX X r X X            
(3) 

3.2. Particle Swarm Optimization 

       PSO is led by swarm intelligence behavior which takes advantage of the social 
information sharing model. Individuals (i.e., particles) fly across a higher-
dimensional search space in PSO (Poli et al. 2007). The individuals' tendency to 
imitate the success of others in population leads to changes in particle positions 
within the search space (called swarm). The knowledge, of a particle's surroundings 
thereby affects its modification within the swarm. The search characteristic of a 
particle is affected by the search characteristic of other particles in the swarm. The 
particle keeps track of its location in the problem space, which is related to its best 
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solution so far, known as
bestp , and the overall best value is the best value recorded by 

the particle swarm optimizer when globally treated. Furthermore, its current 
location, as determined by any particle in the population, is known as

bestg . Each 

particle's velocity is changed as it moves toward its
bestp and bestg  positions in the 

particle swarm optimization process. Separate random values are created for 
acceleration towards the 

bestp and 
bestg  positions, which are weighted by random 

terms. The PSO method adjusts the particle's velocities and positions as shown in the 
equations below. 

         1 1 2 2
2

1 2

2
1 , ,

2 4

where , 4

ii i best i best ivel t vel t cr p z t c r g z t

c c

 
  

 

        
  

  

                                            (4)    
                                         

     1 1i i iz t z t vel t                                                                                                                         (5)                                                                 

where, c1  and c2  are the positive constants which represent the cognitive learning 
factor, and social learning factor respectively, r1 and r2 are random numbers in range 
[0,1]. 
  1 2 dim, ,...,

T

i i i iz z z z depicts the ith particle position in the search space of dimension 

dim, and,  1 2, ,...,
T

i i i invel vel vel vel depicts the ith particle velocity. 

3.3.  Spotted Hyena optimizer 

       Spotted Hyena Optimizer is a new bio-inspired optimization algorithm, which 
simulates the collaborative behavior of a group of spotted hyenas during encircling, 
hunting, and attacking the prey (Dhiman & Kumar, 2017).   

3.3.1. Prey encircling  

      During prey encircling, the target prey is assumed to be the best solution, and the 
other spotted hyenas change their positions by following the best solution. This 
behavior is mathematically modeled as follows. 

   
Prey

.
h SHD A P t P t 

  
    (6) 

   
Prey

1 . 
SH h

P t P t B D  
   

       (7)         

where 
hD


denotes the separation between the spotted hyena and prey, t denotes the 

present iteration, A


 and B


 are co-efficient vectors, PreyP


 represent prey’s position 

vector, and SHP


 represent spotted hyena’s position vector. 

12     A r 
 

      (8) 

22B s r s  
   

      (9) 

5
5

MaxIter
s t    

 


     (10) 
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where s


reduces linearly from 5 to 0, and 1r


, and 2r


 randomly changes between 0 

and 1. 

3.3.2. Prey hunting and Prey searching 

During prey hunting, the hunting strategy adopted by spotted hyenas in the SHO 
algorithm is modeled mathematically as follows: 

                            .                               h KbSHD A P P 
        (11) 

K bSH hP P B D  
   

     (12) 

1 ....K K K MhC P P P    
   

     (13) 

where, bSHP


 is the initial best position of spotted hyena, KP


 represents the position 
of other spotted hyenas, and M represents the number of spotted hyenas (shown in 
Eq.(13)). 

  1 2 ,, , .....bSH bSH bSH bSHM count P P P P R  
        (14) 

R


 randomly varies between 0.5 and 1, and 
hC


is a cluster of M number of optimal 

solutions.
   

                                                                       
During prey hunting, spotted Hyenas attack the prey in a way that is mathematically 
expressed below:

 
 1 h

SH

C
P t

M
 

              
(15) 

where,  1SHP t


 saves the best solutions, and the positions of the remaining spotted 

hyenas' changes relative to the best-spotted hyena’s position. During prey searching, 
the vector A in Eq. (11) provides random values during the iteration process, which 
aids in exploration. 

3.4. Chimp Optimization algorithm 

       The Chimp optimization algorithm, a metaheuristic optimizer, is motivated by the 
intelligence behavior exhibited by the chimps during hunting in their communities 
(Khishe & Mosavi, 2020). There are four categories of chimps, i.e., attacker, chaser, 
barrier, and driver, with different capabilities. The chaser, barrier, and driver lead the 
exploration process while the function of the attacker leads the exploitation process. 
The behavior of chimps modeled as follows: 

               
prey chimp

. .             d c P t o P t          (16)       

   
chim p prey

1 .P t P t a d          (17) 

where 
prey

P  and 
chimp

P indicate the position vectors of the prey and the chimp 

respectively. The co-efficient vectors c, o, and a are determined as follows: 
12. . a g r g           

(18) 
22. c r          

(19) 
o = chaotic_value         

(20) 
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where g diminishes from 2.5 to 0 through the iteration process, o is a chaotic vector 
determined using chaotic maps. The generation of stochastic population of  chimps is 
the initial step in the chimp optimization algorithm. Then in the next step, chimps are 
classified into four varying categories: driver, barrier, attacker, and chaser. The best 
chimps are the initial attacker, barrier, driver, and chaser as they are aware of the 
prey's position. Therefore, amongst the entire set of best solutions, four best solutions 
are used to represent them. The rest of the chimps are compelled to change their 
locations on the basis of the best chimp locations. This behavior can be 
mathematically expressed as below: 

Attacker Attacker1 1. ( ) . d c P t o P                    
(21) 

 
Barrier Barrier2 2. . d c P t o P    (22) 

 
Chaser Chaser

3 3. . d c P t o P    (23) 

 
Driver Driver4 4. . d c P t o P    (24) 

 
A ttacker Attacker1 1 . P P t a d       (25) 

 
Barrier Barrier2 2 . P P t a d    (26) 

 
Chaser3 3 . 

Chaser
P P t a d    (27) 

 4 4 . 
Driver Driver

P P t a d    (28) 

   1 2 3 41 / 4P t P P P P       (29) 
where, 

Attacker
d , 

Barrier
d , 

Chaser
d , and 

Driver
d  analogs with d in Eq. (16).  

For updating the location of the chimps during the searching period, a probability of 
50% is chosen between two alternatives, i.e., the usual updating rule and the chaotic 
model, which is mathematically expressed below: 

 
 

prey

chimp

.   if 0.5
1

Chaotic_value if 0.5

 

P t a d
P t





    


 
    (30) 

3.5. Moth Flame Optimization 

       Transverse orientation for navigation of moths at night using moonlight forms the 
motivation of this MFO algorithm (Mirjalili, 2015). In the MFO algorithm, the 
candidate solutions are the moths and the problem variables refers to their positions 
in the search space. The set of moths is represented as a matrix with n moths and dim 
dimensions which is shown below: 

1,1 1,2 1,dim

2,1 2,2 2,dim

,1 ,2 ,dim

   

   

               

    n n n

m m m

m m m
M

m m m

 
 
   
  
 




   


 

          
(31) 

We further suppose that the fitness values for all the moths are stored in an array, as 
follows: 
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2=
   

n

OM

OM
OM

OM

 
 
 
 
 
 



 
       (32) 

Another key part of the MFO algorithm is flames. The following is a matrix that is 
identical to the moth matrix: 

1,1 1,2 1,dim

2,1 2,2 2,dim

,1 ,2 ,dim

   

   

               

    n n n

F F F

F F F
F

F F F

 
 
   
  
 




   


 

(33) 

where n is the number of moths and dim is the dimension. The dimension of the flame 
matrix is the same as the dimension of the moth matrix. Both the moth and the flame 
are solutions, but the moth is the search agent and the flame is the moth's best 
position. Flames are the flags that moths drop during the search process, and the 
moths travel around the flags and update accordingly. As a result of this, the moths 
never lose their best solution. According to the equation below, moths update their 
position in relation to flame. 

 =  ,i i jM S M F       (34) 

where
iM  represents the ith moth, 

jF  represents the jth flame, and the spiral function 

is represented by S. The logarithmic spiral motion of the moth is given below: 
   , . . cos 2bt

i j i jS M F D e r F           
(35) 

where, 
i j iD F M           

(36) 

b is a constant that determines the form of spiral motion, r refers to random number 
within [-1, 1]. Flame gets updated over the course of iterations as follows: 

1
flame no = round

MaxIter

N
N t

   
 

         
(37) 

where N is the maximum number of flame.  

3.6. Ant Lion Optimization 

       Ant Lion Optimizer is a metaheuristic optimizer which is conceptualized based on 
the chasing strategy of antlions in catching their prey (Mirjalili, 2015). The ant lions 
hide underneath the base of the cone-shaped cavities in the sand and then wait for 
the ants to get captured in the hole. They throw sand at the tip of the trap so that the 
ants fail to escape and slide down to the bottom of the trap. In this manner, the ants 
get captured by the ant lions. The pits are rebuilded to capture other ants. The 
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positions of the ants are stored in the matrix 
AntM (shown in Eq. (38)) which is 

employed during the optimization. 
11 1dim

1 dim

     Ant

n n

A A

M

A A

 
   
 
 


  



             
(38) 

where n refers to the quantity of ants, and dim refers to the dimension of the problem. 
Fitness function f is utilized for the evaluation of the fitness of each ant during 
optimization; the fitness values are stored in the matrix 

OAntM  as shown below: 

 
 

 

1,1 1,2 1,dim

2,1 2,2 2,dim

,1 ,2 ,dim

f  ,..., 

f  ,..., 

                 

                 

f  ,..., 

OAnt

n n n

A A A

A A A

M

A A A

    
    

  
 
 
     




 

      
(39) 

Apart from ants, the ant lions also have their hideouts in the search domain. The 
matrices 

AntlionM and 
OAntlionM  save the positions and fitness values of the ant lions, 

respectively. 

1,1 1,

,1 ,

m

Antlion

n n m

A A

M

A A

 
   
 
 


  



 
     (40)

 
 

 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

  

  

                

                

  

m

m

OAntlion

n n n m

f AL AL AL

f AL AL AL

M

f AL AL AL

    
    

  
 
 
     




 
     (41)

 
While searching for food, ants move in a stochastic fashion; thus, a random walk is 
selected to simulate ants’ movement as below: 

          1 20,csum 2 1 ,csum 2 1 ...,csum 2 1MaxIterX t r t r t r t     
    (42) 

where csum reveals the cumulative sum, t reveals the random walk steps, and  r t is 

a stochastic function which is enumerated as follows: 

 
1 if rand  0.5

0 if rand  0.5
r t


  

       
(43) 

To limit the movement within the search space in a random fashion, Eq. (42) is 

normalized exploiting the Eq. (44). 
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t t
i i i it

i it
i i

X a b c
X c

d a

  
 

  
      

(44) 

Eq. (45), and Eq. (46) show how ants’ slide down into pits. 
t

t c
c

I
              

(45)                      

t
t d

d
I

         
(46) 

When the ant reaches the pit bottom, the antlion snatches it and consumes it. To 
improve its chances of obtaining new prey, an antlion must update its position to the 
most recent position of the chased ant. Eq. (47) represents this procedure. 

   t i t t
j i i jAntlion Ant   if  f Ant  > f Antlion          

(47) 

In every step, elitism is employed to keep the best solutions. The fittest antlion is 
treated as elite, which is the best antlion achieved. In every step, the elite should have 
an impact on the antlion (random movement). For this, every ant is assumed to 
associate with an antlion by Roulette wheel and elite, which Eq. (48) gives.  

t t
t A E
i

R R
Ant

2


        

(48) 

 
t
AR , and t

ER  represent the random walk around the selected antlion and elite at tth 

iteration respectively. 

3.7. Marine Predator Algorithm (MPA) 

      The marine predator algorithm is a novel nature-inspired metaheuristic algorithm 
that replicates the biological interaction between marine predators and prey 
(Faramarzi et al., 2020). Predators are inspired in this algorithm to use the 
widespread foraging methods known as the Brownian and Levy random movement 
in the marine ecosystem. Predators utilize the Brownian approach if there exists a 
large concentration of prey in the hunting region, and the Levy method when there is 
a low concentration of prey. However, environmental factors namely eddy generation 
and the effects of fish aggregating devices (FADs) are among the elements that 
influence marine predator behavior. The steps of the algorithm are enumerated as 
follows: 

3.7.1. Initialization 

      Both the Prey (P) and Elite (E) matrices are formed during the initialization phase. 
In accordance with the survival of the fittest argument, the skilled foragers are the 
top predators in nature. Thus, in order to construct the Elite matrix, the fittest 
solution is designated as a top predator. Prey is another matrix with the same 
dimension as Elite, and predators use it to update their positions. 
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3.7.2. Phase 1 

      This phase commences during the one-third of iterations and is implemented by a 
large velocity ratio  10v   for an adequate exploration ability, wherein the 

movement of the prey is faster than the predator. The prey moves quickly to guard 
their food. Whereas the fittest predators are stationary during this stage. This stage is 
mathematically illustrated with the help of equations (Eq. 49 & Eq. 50). 

MaxIter
While t

3
                

        1, 2,....,ii B i BS R E R P i n    
      

      
(49) 

              0.5i i iP P R S  
   

       
(50) 

where 
iS


 indicate the step size of the predator, 
BR


is the random vector based on 

normally distributed Brownian motion, R


indicate a uniformly distributed random 
variable, and n indicates the search agents per population. The notation  indicate 
entry-wise multiplications.  

3.7.3. Phase 2 

      In this phase, there is a transient transformation from exploration to exploitation. 
Here, the velocity ratio of unity (v ≈ 1) indicates that both the predator and the prey 
moves at an identical speed. 

MaxIter 2
While < t < MaxIter

3 3
 

The first half population gets updated based on Levy strategy as follows: 

      1, 2,...., / 2ii L i LS R E R P i n    
            

(51) 

 0.5i i iP P R S  
           

(52) 
where 

LR


is a uniformly distributed random vector based on Levy motion. On 

contrary, the second half population is updated using Brownian strategy as follows 
(shown in Eq. (53) & Eq. (54):   

      / 2, ....,ii B B iS R R E P i n n    
            

(53) 

 0.5i i ifP E X S  
          

(54) 
where 

fX  is a variable that monitor the predator’s step size and is evaluated by the 

following Eq. (55) 
  2 /

1
t MaxIter

f

t
X

MaxIter


        

  (55) 
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3.7.4. Phase 3 

       This phase is usually marked with a high level of exploitation capacity. This phase 
is marked by a low velocity ratio (v = 0.1), in which the predator runs past the prey. 
This phase is based on Levy movement which is mathematically expressed as follows: 

2
While t MaxIter

3
  

      1, 2, ....,ii L B iS R R E P i n    
            

(56) 

 0.5i i ifP E X S  
  

       
(57) 

3.7.5. Finishing 

      After each iteration, the best solutions gets stored in the Elite (E) matrix. The final 
solution is then achieved after the last iteration. 

3.8. Harris Hawk Optimization 

       Harris Hawk optimization (HHO) is a new nature-inspired optimizer that imitates 
the chasing trait of Harris hawks in order to catch their prey (rabbit), which are the 
best solutions in the search space (Heidari et al., 2019). HHO goes through two 
stages: the first is looking for prey with a group of hawks, and this stage is referred to 
as the exploration phase in the algorithm. The second stage involves hunting the prey 
in order to catch it, which is depicted in the optimization algorithm as the 
exploitation phase. The balance between exploitation and exploration of search space 
is determined by the rabbit's energy escape, with hawks having the potential to 
explore for large energy and exploitation for small energy. In the exploration phase, 
the HHO algorithm employs two alternative search strategies. These strategies are 
chosen based on α; if α is greater than 0.5, the first strategy is employed to search 
near one of the other hawks at random, but if α is lesser than 0.5, the second strategy, 
stated in Eq. (59) is employed for the search operation.  

        1 21 2 0.5rand randX t X t s X t s X t                 (58) 

          3 41 0.5rabbit mX t X t X t s LB s UB LB                   (59) 

   
1

1
where 

N

m i
i

X t X t
N 

   

The mathematical model to demonstrate the mechanism which is exploited to get 
transformed from the exploration phase to the exploitation phase is shown in Eq. 
(60). 

02 1
t

E E
T

   
 

           (60) 

The algorithm arrives the exploration phase when 1E  whereas the algorithm 

arrives the exploitation phase when 1E  . E diminishes when the iteration count 
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increases. In the exploitation phase, the HHO algorithm utilizes four different ways to 
conduct optimization operations. If E is greater than 0.5, two techniques are used: 
besiege and soft besiege with increasing quick dives. If E is less than 0.5, two 
techniques are used: besiege and hard besiege with progressive quick dives. The 
illustration of the strategies can be found in the literature.  
 

4. WEDM performance optimization 

To assess the efficacy of the eight metaheuristic optimization techniques, single and 
multiple objective optimization is carried out for two WEDM processes (elaborated in 
case 1, and case 2). The codes for the eight optimizers are built in MATLAB R2018a 
and executed on Windows 10 OS, Intel(R) Core™ i5 processor, and 8.00 GB RAM. For 
unprejudiced comparison amid the performances of the considered optimizers, 
population size, and maximum generation is kept at 50 and 100 respectively for all 
the considered algorithms.  

4.1. Case 1 Performance optimization in WEDM of A286 superalloy 

      We assessed the WEDM performances such as material removal rate (MRR, in 
mm2/min) and surface roughness (SR in µm) for an A286 Superalloy. Machining of 
the samples are accomplished using an Ultra cut F1 model, a variant of the WEDM 
machine tool. Twenty-seven sets of experiments are undergone under the L27 
scheme. Five parameters are tuned in three subsequent levels (depicted in Table 1) 
within the stipulated bounds while machining. Finally, multiple performances are 
optimized simultaneously using a multi-objective evolutionary algorithm and a 
decision making tool (Saha et al., 2021). In this research, we use the eight different 
metaheuristic optimizers to optimize individual performances as well as two 
performances at the same time. The goal is to compare the performances of the 
optimizers. To accomplish the task, we intend to exploit the mathematical 
expressions used for devising the correlation between the response variables and the 
explanatory variables in the previous investigation (Saha et al., 2021). The 
mathematical models are shown below: 

2 2
1 2 3 4 5 1 2

2 2 2
3 4 5 1 2 1 3 1 4

1 5 2 3 2 4 2 5 3 4

4 5

567 20.39 2.91 102.8 28.4 2.83 0.0497 0.0354

8.192 0.037 0.0302 0.0117 * 0.858 * 0.1511 *

0.0034 * 0.244 * 0.1140 * 0.0196 * 0.326 *

0.145 *

MRR x x x x x x x

x x x x x x x x x

x x x x x x x x x x

x x

       

     

    


 

            
(61) 

2 2
1 2 3 4 5 1 2

2 2 2
3 4 5 1 2 1 3 1 4

1 5 2 3 2 4 2 5 3 4

177.3 0.59 0.889 27.26 1.82 0.110 0.00276 0.00934

1.2656 0.0323 0.00642 0.00014 * 0.0177 * 0.0157 *

0.0034 * 0.244 * 0.1140 * 0.0196 * 0.326 *

0.14

SR x x x x x x x

x x x x x x x x x

x x x x x x x x x x

       

     

    

 3 55 *x x

 

          
(62)                   



Saha et al./Oper. Res. Eng. Sci. Theor. Appl.  
 

 
 

Table 1. Process variables and levels 
Process variables Level 1 Level 2 Level 3 

 1x Pulse on period (μs) 120 125 130 

 2x Pulse off period (μs) 48 52 56 

 3x Peak current (A) 10 11 12 

 4x Wire feed rate 

(m/min) 

5 7 9 

 5x Servo voltage (v) 30 35 40 

 

4.1.1. Single-objective optimization 

      The optimization of MRR and SR is accomplished under a set of constraints 
i.e.,

1120 130,x  248 56x  , 
310 12,x   

35 9,x   and 
430 40x  . The results of 

the different optimizers for the two performance attributes is demonstrated in Table 
2. It is evident that ChoA, MFO, HHO, MPA, and PSO are able to produce the optimized 
MRR of 37.527 mm2/min which is close to the maximum MRR present in the 
experimental dataset (Saha et al., 2021). However, ALO, SHO, and TLBO produces 
optimized MRR of 35.701 mm2/min, 29.614 mm2/min and 6.718 mm2/min 
respectively, which is relatively poor.  

 

Figure 3 Convergence behavior of ALO, ChoA, HHO, MFO, MPA, PSO, SHO, and TLBO for 
MRR 

 
For SR, unlike the SHO, we detect that all the algorithms have produced similar 
results, but better than all the results reported in the previous investigation (Saha et 
al., 2021). To realize the convergence traits of the optimizers, we plotted the 
convergence history of the competing optimizers while optimizing the response MRR 
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(shown in Figure 3). It is noted that HHO algorithm rapidly converges to the global 
optimal solution which exposes the algorithm’s outstanding exploitation capability. 

Table 2. Single-objective optimization outcomes. 
Optimizer Response Optimal 

Value 
Pulse 

on 
period 

Pulse 
off 

period 

Peak 
Current 

Wire 
feed 
rate 

Servo 
voltage 

 
ALO 

MRR 35.701 130 48 11.51 5.01 31.14 
SR 0.4776 120 56 10 5 40 

 
ChoA 

MRR 37.527 130 48 11.63 7 30 
SR 0.4776 120 56 10 5 40 

 
MFO 

MRR 37.527 130 48 11.59 7 30 
SR 0.4776 120 56 10 5 40 

 
SHO 

MRR 29.614 130 48 12 5 30 
SR 0.5320 120 56 10 9 40 

 
MPA 

MRR 37.527 130 48 11.59 7 30 
SR 0.4776 120 56 10 5 40 

 
HHO 

MRR 37.527 130      48 11.59 7 30 
SR 0.4776 120 56 10 5 40 

 
PSO 

MRR 37.527 130 48 11.59 5 30 
SR 0.4776 120 56 10 5 40 

 
TLBO 

MRR 6.718 120 56 10 9 40 
SR 0.4776 120 56 10 5 40 

 

4.1.2. Multiple objective optimization 

       To perform optimization of the two performance attributes (MRR and SR) 
simultaneously, we formed the objective function using weighted-sum method as 
follows:  

     
1 2

min max

SR MRR
Min

SR MRR

Y Y
Y w w             (63) 

where 1w  and 2w  are the preference weights assigned to SR and MRR, respectively. 

Here, equal weights for all the responses are considered, i.e., 
1 2 0.5w w  . 

minSR  is the 

minimum surface roughness and 
maxMRR is the maximum material removal rate, 

which are procured from the single-objective optimization outcomes. Table 3 shows 
the optimal MRR and SR values recommended using the eight competitor techniques 
(ALO, MFO, ChoA, MPA, SHO, HHO, PSO, and TLBO). HHO portrays the superior 
performance i.e., it produces the global optimal responses of MRR and SR at minimal 
value of the combined fitness function (Y = 0.306708). The corresponding optimal 
process parameters are pulse on period = 130 s, pulse off period = 52 s, peak current 
= 10 A, wire feed rate = 5 m/min, and servo voltage = 30 volt. Figure 4 analyzed the 
convergence traits of the eight competing algorithms. The objective function of the 
HHO algorithm approaches the least fitness value (global optimum) in the fewest 
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generations possible, demonstrating the algorithm's excellent exploitation capability. 
Table 4 shows the average computing time (seconds) consumed by the optimizers 
while optimizing the multiple performances. As seen in Table 4, TLBO has the 
shortest average computation time. 

Table 3. Multiple objective optimization outcomes. 
Optimiz
er 

Respons
e 

Optimal 
Value 

Y Pulse 
on 
period 

Pulse 
off 
perio
d 

Curren
t 

Wire 
Spee
d 

Servo 
volta
ge 

Saha et 
al. 

(2021) 

MRR  36.04   
130 

 
52 

 
10 

 
5 

 
30 SR 3.49 

 
ALO 

MRR 1.51  
0.47
967 

 
120 

 
56 

 
10 

 
5 

 
39 SR 0.96 

 
MFO 

MRR 1.20  
0.47
984 

 
120 

 
56 

 
10 

 
5 

 
40 SR 0.79 

 
SHO 

MRR 1.20  
0.47
984 

 
120 

 
56 

 
10 

 
5 

 
40 SR 0.79 

 
PSO 

MRR 1.20  
0.47
984 

 
120 

 
56 

 
10 

 
5 

 
40 SR 0.79 

 
TLBO 

MRR 1.20  
0.47
984 

 
120 

 
56 

 
10 

 
5 

 
40 SR 0.79 

 
HHO 

MRR 36.04  
0.30
670 

 
130 

 
52 

 
10 

 
5 

 
30 SR 3.49 

 
MPA 

MRR 1.20  
0.47
984 

 
120 

 
56 

 
10 

 
5 

 
40 SR 0.79 

 
ChoA 

MRR 1.20  
0.47
984 

 
120 

 
56 

 
10 

 
5 

 
40 SR 0.79 
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Figure 4 Convergence behavior of ALO, ChoA, MFO, SHO, HHO, MPA, PSO, and TLBO for 
multi-objective function. 

Table 4. Average computation time for the eight optimizers 
Optimizer Average Computational time (secs) 

ALO 2.20241 

ChoA 1.83478 

MFO 1.53465 

SHO 1.85662 

HHO 2.53421 

MPA 1.25715 

PSO 1.23427 

TLBO 1.20124 

 

 

4.2. Case 2 Performance optimization in WEDM of Ti-6Al-4V alloy 

       (Devarajaiah & Muthumari, 2018) conducted WEDM machining on Ti-6Al-4V 
employing wire EDM machine tool of Model: DK 7732. The machine tool used in this 
work is based on reusable wire technology and doesn't need air-conditioning below 
40 degrees centigrade. Molybdenum wire electrode (diameter of 0.18 mm) is 
employed as wire electrode. Four parameters, i.e., pulse duration, pulse off period, 
applied current, and wire-speed, were selected as control variables. The levels 
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considered for the four control variables are revealed in Table 5. Two vital process 
performance measures were considered as responses (i.e., material removal rate 
(MRR in g/min) and power consumption (PC in kW)). The experimental trials were 
carried out as per Taguchi L16 design, and each trial is repeated thrice to capture the 
variability in the WEDM responses. Furthermore, regression analysis was employed 
by (Devarajaiah & Muthumari, 2018) to correlate the performance measures with the 
control variables. The regression models for MRR and PC are shown below (Eq. (64) 
& Eq. (65)):  
 

2
1 2 3 4 1

2 2
2 3 1 4 2 3

0.00249 0.0056 0.0151 0.000011 0.000065

0.00039 0.00008 0.000001 0.00088

MRR x x x x x

x x x x x x

    

   
 

     (64) 

2
1 2 3 4 1

2 2
2 3

0.756 0.002 0.0569 0.0133 0.000045 0.000036

0.00273 0.002

PC x x x x x

x x

     

 
 

    (65) 

Table 5. Process variables with levels 
Process Variables Level 1 Level 2 Level 3 Level 4 

 1x Pulse on 

period (μs) 

13 20 27 36 

 2x Pulse off 

period (μs) 

4 6 8 10 

 3x Current (A) 1 2 4 5 

 4x Wire speed 

(rpm) 

350 700 1050 1400 

 

4.2.1. Single objective optimization 

       In this case, two responses, i.e., MRR and PC, are optimized separately engaging 
the eight metaheuristic optimization algorithms. In other words, we intend to 
discover the optimal parametric condition for both the responses separately using 
the competing algorithms. The goal is to maximize the MRR and minimize the PC 
subjected to the imposed constraints as follows:

113 36,x  24 10x  ,
31 5,x  and 

4350 1400x  . Table 6 exhibits the single objective optimization solutions derived 

by the eight metaheuristic optimizers. It is observed that all the competing optimizers 
furnished improved optimal MRR than the optimal MRR derived by (Devarajaiah & 
Muthumari, 2018). Unlike the SHO algorithm, all the algorithms have drastically 
improved the MRR from its initial value of 0.0647gm/min (Devarajaiah & Muthumari, 
2018). From the optimal PC values as registered by the eight competitor algorithms 
(shown in Table 6), it is worth pointing that all the algorithms deliver almost similar 
performance. Besides, the optimal PC provided by the optimizers are found to be 
relatively better than the optimal PC endorsed by (Devarajaiah & Muthumari, 2018). 
When the convergence traits of the eight competitor algorithms are analyzed (shown 
in Figure 5), it is noted that HHO, and TLBO have accelerated tendency to converge 
faster to global optimal solution implying better exploitation potential of the two 
algorithms.  
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Table 6. Single objective optimization outcomes. 
Optimizer Response Optimal 

value 
Pulse 

duration 
Pulse off 
period 

Current Wire 
Speed 

(Devarajaiah 
& 

Muthumari, 
2018). 

MRR 0.0647  27 4 4 1400 
PC 0.589 27 8 1 700 

 
ALO 

MRR 0.0825 29.92 4 5 1400 
PC 0.523 13 10 1 350 

 
ChoA 

MRR 0.0825 29.92 4 5 1400 
PC 0.523 13 10 1 350 

 
HHO 

MRR 0.0825 29.92 4 5 1400 
PC 0.523 13 10 1 350 

 
MPA 

MRR 0.0825 29.92 4 5 1400 
PC 0.52313 13 10 1 350 

 
SHO 

MRR 0.0669 21.17 4 5 350 
PC 0.52313 13 10 1 350 

 
MFO 

MRR 0.0825 29.92 4 5 1400 
PC 0.52313 13 10 1 350 

 
PSO 

MRR 0.0825 29.92 4 5 1400 
PC 0.52313 13 10 1 350 

 
TLBO 

MRR 0.0825 29.92 4 5 1400 
PC 0.52313 13 10 1 350 

 

Figure 5 Convergence behavior of ALO, ChoA, MFO, SHO, HHO, MPA, PSO, and TLBO for 
MRR. 
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4.2.2. Multiple objective optimization 

       For multiple performance optimization, Eq. (66) is exploited as the objective 
function which is displayed below: 

     
1 2

min max

PC MRR
Y

PC MRR

Y Y
Min w w   (66) 

where 
1w  and 

2w  are the preference weights to PC and MRR respectively. In the 

present paper, we have assigned equal weights to PC and MRR, respectively. 
minPC  is 

the minimum power consumption, and 
maxMRR is the maximum material removal 

rate. The values are attained from the single-objective optimization results. Table 7 
reported the findings of multiple performance optimization exploiting eight 
metaheuristic optimization algorithms. ALO, MFO, ChoA, HHO, TLBO, and MPA have 
been discovered to seek the best trade-off condition for both the performance 
attributes as corroborated when compared with the reported results by (Devarajaiah 
& Muthumari, 2018). Substantial improvement in MRR with a marginal decrement in 
the performance of PC is evident utilizing these algorithms. Conversely, SHO and PSO 
algorithms are found to deliver mediocre optimal performances. When the 
convergence traits of the eight competing algorithms are compared, it is discovered 
that the HHO algorithm rapidly converges to the minimal function value at minimal 
generation (as shown in Figure 6), confirming the HHO algorithm's exceptional 
exploitation capability. The comparison of average computational time for the eight 
algorithms for multiple performance optimization is exhibited in Table 8. It is noted 
from Table 8 that the TLBO algorithm requires the least computational time to reach 
the optimality condition. 

Table 7. Multiple-objective optimization outcomes 
Optimizer Response Optimal 

Value 
Y Pulse 

on 
time 

Pulse 
off 

time 

Current Wire 
Speed 

(Devarajaiah 
& 

Muthumari, 
2018) 

MRR 0.0348   
 

 
20 

 
6 

 
2 

 
1050 PC 0.625 

 
ALO 

MRR 0.049  
0.53072 

 
16.12 

 
6.71 

 
5 

 
350 PC 0.670 

 
MFO 

MRR 0.048  
0.53228 

 
16.09 

 
6.77 

 
5 

 
350 PC 0.669 

 
ChoA 

MRR 0.049  
0.53072 

 
16.12 

 
6.71 

 
5 

 
350 PC 0.670 

 
HHO 

MRR 0.049  
0.53072 

 
16.12 

 
6.71 

 
5 

 
350 PC 0.670 

 
SHO 

MRR 0.044  
0.53089 

 
15.75 

 
6.40 

 
5 

 
350 PC 0.676 

 
PSO 

MRR 0.0255  
0.53199 

 
16.12 

  
10 

 
2.88 

 
350 PC 0.572 

 
TLBO 

MRR 0.049  
0.53072 

 
16.12 

 
6.71 

 
5 

 
350 PC 0.670 

 MRR 0.049      
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MPA PC 0.670 0.53072 16.12 6.71 5 350 
 

 

Figure 6 Convergence behavior of ALO, ChoA, MFO, SHO, HHO, MPA, PSO, and TLBO for 
multi-objective function. 

Table 8. Average computation time for the eight optimizers 
Optimizer Average computational time (secs) 

ALO 5.070851 

ChoA 1.664359 

MFO 1.119026 

HHO 1.052527 

MPA 0.720689 

SHO 0.1390570 

PSO 0.2506701 

TLBO 0.3054067 

 

5. Statistical and sensitivity Analysis 

To summarize the robustness and performance stability of the metaheuristic 
optimizers, we retrieved the statistical data evaluated for all the optimizers while 
dealing with multi-objective optimization problems in the two considered cases. The 
statistical metrics such as the mean and co-efficient of variation are evaluated after 
the execution of the optimizers for 30 number of runs.  
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Figure 7 Bar plots revealing mean value of objective function derived using optimizers 
for the two cases. Case-1 Performance optimization in WEDM of A286 superalloy; Case-

2 Performance optimization in WEDM of Ti-6Al-4V superalloy 

      The mean value of objective function procured using the optimizers for the two 
cases are plotted in the form of 3D bar plots in Figure (7). From Figure (7), it is clear 
that HHO provides the least mean value of objective function for all the cases 
corroborating the robustness of HHO over the other competing algorithms in terms of 
tracking the global optimal solution. Figure (8) portrays the coefficient of variation 
procured using the optimizers for the two cases in the form of 3D bar plots. It is noted 
that HHO exhibits the least coefficient of variation for all the cases corroborating that 
HHO optimizer has the maximum stability over its other competitors. To summarize, 
it can also be inferred that HHO exhibits robustness in bolstering an adequate balance 
between two phases (i.e., exploration and exploitation). 
 

 

Figure 8 Bar plots revealing coefficient of variation derived using optimizers for the two 
cases. Case-1 Performance optimization in WEDM of A286 superalloy; Case-2 
Performance optimization in WEDM of Ti-6Al-4V superalloy 
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6. Performance of optimizers on benchmark test functions 

As corroborated from the different cases investigated in WEDM on the superiority of 
HHO over the other competing algorithms, we further intend to investigate the 
robustness of HHO by comparing its performance with the other competing 
optimizers on standard test functions. The details of the standard test functions can 
be found in the literature (Zhu & Kwong, 2010). The standard test functions 
considered in the present work are the Sphere function, and the Generalized 
Rastrigin’s function, respectively. Sphere function is a unimodal function which 
contains only one optimum point. Whereas Generalized Rastrigin’s function is a 
multimodal function which contains many local optima but only one global optimum. 
The mathematical description of the functions is illustrated below: 
Sphere function 

dim 30
2

1

( )    -100 100i i
i

F x x x




           
(67) 

where dim denotes the dimension of the solution space, and -100 100ix  depicts 

the initial range of ix . 

Generalized Rastrigin’s function 

   
dim 30

2

1

10cos 2 10      -5.12 5.12i i i
i

F x x x x




        
       (68) 

where dim refers the dimension of the solution space, and -5.12 5.12ix   depicts 

the initial range of ix . 

Table 11 depicts the results (Average ± standard deviation) of the eight optimizers on 
the optimization of benchmark test functions. HHO algorithm is found to be superior 
over the other optimizers in terms of robustness.  

Table 11. Performance comparison on benchmark test functions 
Optimizer ALO ChoA MFO HH

O 
MPA SHO PSO TLBO 

Sphere 
Function 

5.30E-
09 
±3.4035
E-09 
 

2.60E-
06 
±6.43
E-06 
 

3.38E
-13 
±5.21
E-13 
 

0 ± 
0 

2.76E
-21 
±3.66
E-21 
 

6.61
E-
100 
±1.5
E-99 
 

3.39E-07 
±8.40871
E-07 

2.83E
-89 
±6.78
E-89 
 

Generalize
d 
Rastrigin’s 
Function 

23.4809
8± 
12.6612
3 
 

10.63
647  
± 
10.56
995 
 

20.70
2215 
± 
11.50
4771
2 
 

0 
± 0 
 

0 
± 0 
 

0 
± 0 
 

12.43697 
± 
6.52438 
 

2.45E
+00  
± 
2.154
3798
09 
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7. Conclusions 

WEDM is a complicated machining process. Machining in WEDM at any parametric 
combination does not result in enhanced performance outcomes. For improved 
performances in WEDM, machining must be carried out in compliance with the 
optimal parametric settings. Metaheuristic optimizers have grown in prominence due 
to their potential to provide global optimal solutions. However, the use of recently 
reported metaheuristic optimizers in non-traditional machining techniques has 
received little attention. 
      The novelty of the present article is to explore the six recently reported 
metaheuristic optimizers namely the ant lion optimization (ALO), chimp optimization 
algorithm (ChoA), moth flame optimization (MFO), spotted hyena optimization 
(SHO), Harris Hawk optimization algorithm (HHO), and Marine predator algorithm 
(MPA) in the optimization of WEDM performances for two WEDM processes. Two 
well-known existing optimization approaches (i.e., PSO and TLBO), are also included 
in this study to allow a fair evaluation of the algorithms' performance. The 
comparison between the eight algorithms are carried out in terms of the optimal 
solutions, convergence rate, and average computational time. The goal of the 
comparative analyses is to select the robust optimizer. It is observed that the HHO 
algorithm is extremely robust in yielding global optimal solutions. Moreover, HHO 
algorithm surpasses other competitors in terms of rapid convergence. Thus, HHO 
portrays high exploration and exploitation potential. TLBO algorithm shows the least 
average computation time. Besides, two-sample t-tests are carried out to test the 
statistical difference between HHO and the different competing algorithms. Future 
research might focus on the exploitation of HHO to determine the optimal operating 
condition in other areas of manufacturing.   
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